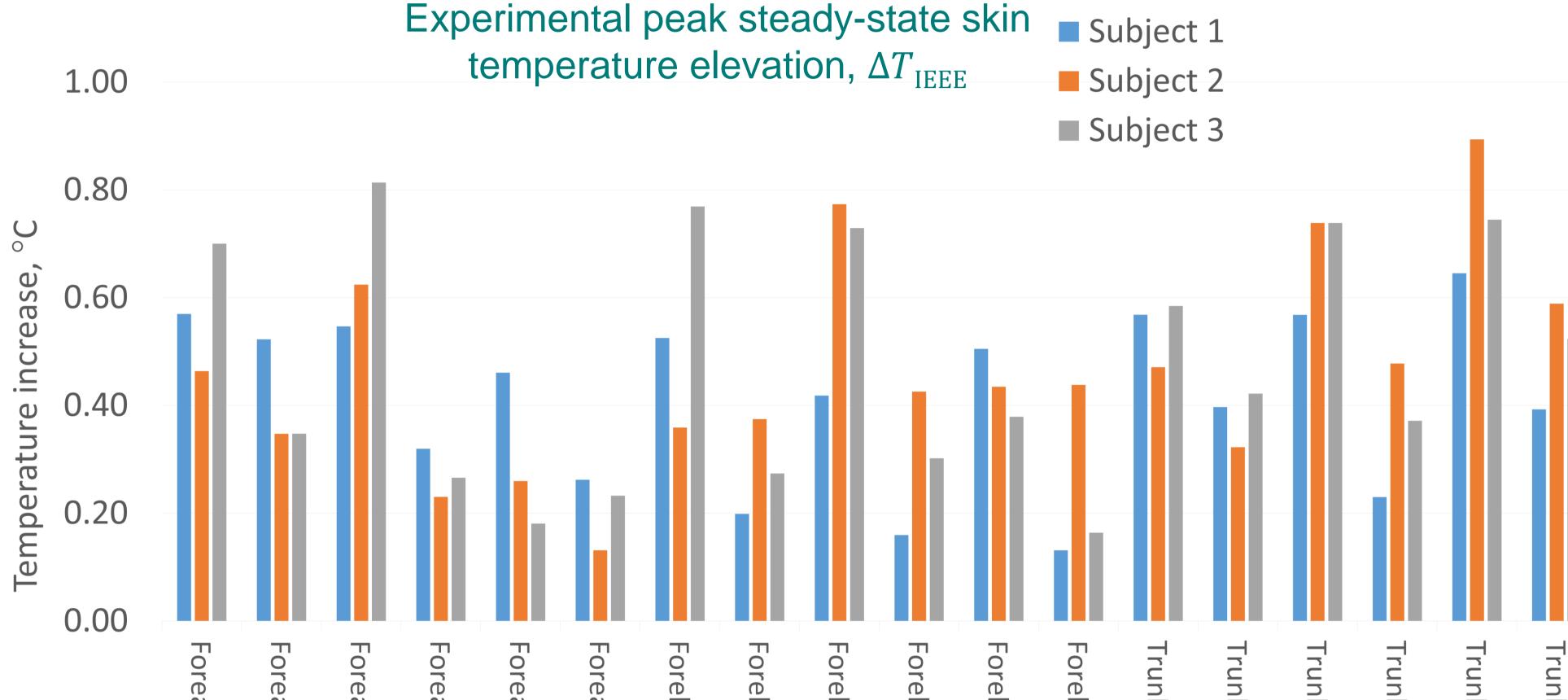
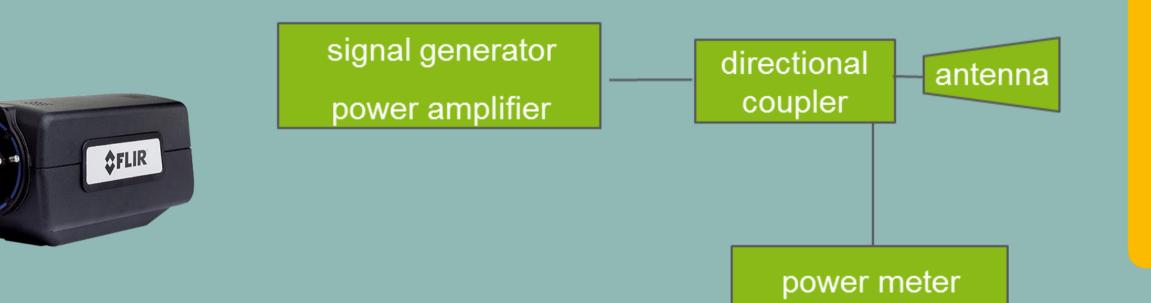
Numerically and experimentally assessed skin temperature elevations for localized RF exposure at frequencies above 6 GHz

D. Colombi¹, B. Xu¹, C. Törnevik¹, B. Thors¹, A. Christ², M. Ziskin³, K. R. Foster⁴ and Q. Balzano⁵ ¹ Ericsson Research, ² Research Consultant, ³ Temple University, ⁴ University of Pennsylvania, ⁵ University of Maryland


Objective: Collect experimental data for skin temperature elevation due to RF exposure at frequencies above 6 GHz and compare with numerical results obtained by means of thermal modelling Results: (1) State of the art thermal models can be used to conservatively predict skin temperature elevation due to RF energy absorption. (2) For the assessed configurations, the localized peak skin temperature elevation, corresponding to the exposure reference levels (ERL) recently proposed in the draft revision of IEEE C95.1, is less than 1 °C.


Measurements

• Thermographic measurements based on IR recordings of the skin in close proximity to RF sources

- Frequencies investigated: 15 GHz, 28 GHz and 39 GHz (CW)
- Standard waveguide horn antennas (WR-62 and WR-28)
- FLIR A6750sc, cryo-cooled camera (sensitivity: < 20 mK)

$$\Delta T_{\rm IEEE} = \Delta T_{\rm RAW} \frac{P_{\rm IEEE}}{100 \text{ mW}}$$

 P_{IEEE} = Max forward power to comply with IEEE/ICES draft general public ERLs ($55f^{0.177}$ W/m² averaged over 4 cm², $6 \text{ GHz} \leq f \leq 100 \text{ GHz})$

100 mW = Forward power to the horn antenna

 $\overline{\mathbf{x}}$

15

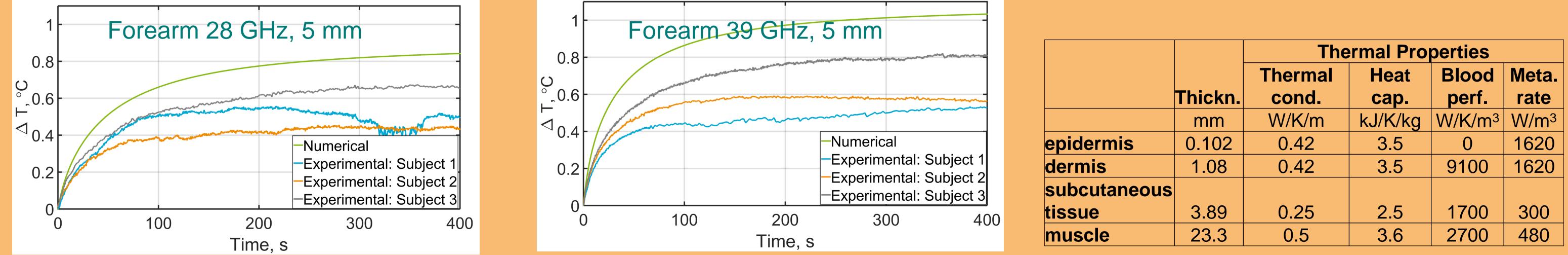
GHz

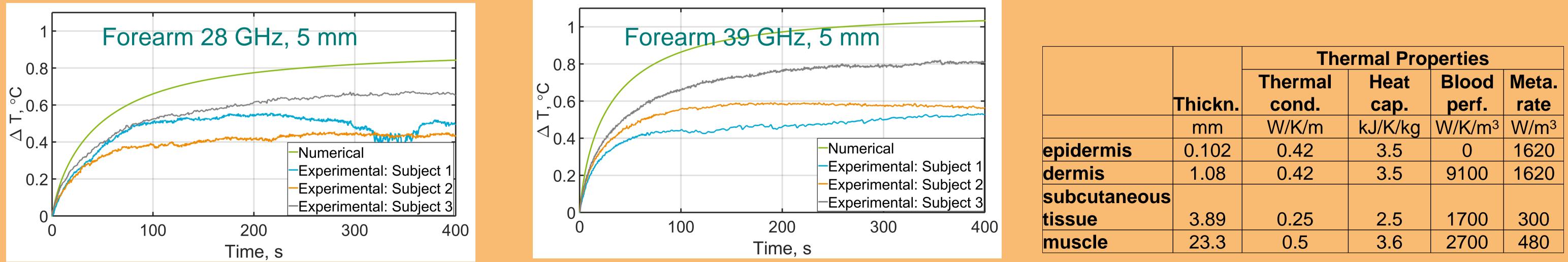
15

Forearm 28 GHz 5 mm	Forearm 28 GHz 15 mm	Forearm 39 GHz 5 mm	Forearm 39 GHz 15 mm	Forearm 15 GHz 5 mm	Forearm 15 GHz 15 mm	Forehead 28 GHz 5 mm	Forehead 28 GHz 15 mm	Forehead 39 GHz 5 mm	Forehead 39 GHz 15 mm	Forehead 15 GHz 5 mm	Forehead 15 GHz 15 mm	Trunk 28 GHz 5 mm	Trunk 28 GHz 15 mm	Trunk 39 GHz 5 mm	Trunk 39 GHz 15 mm	Trunk 15 GHz 5 mm	
---------------------	----------------------	---------------------	----------------------	---------------------	----------------------	----------------------	-----------------------	----------------------	-----------------------	----------------------	-----------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--

 ΔT_{RAW} = Measured temperature increase for a forward power of 100 mW

 ΔT_{IFFF} = Temperature increase for a forward power of P_{IFFF}


P_{IEEE} (based on power density measurements)


	15 GHz	28 GHz	39 GHz
5 mm	25 mW	16 mW	14 mW
15 mm	33 mW	24 mW	18 mW

Comparison with simulations

4-layer tissue model as described in:

Sasaki, et al. "Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz." Physics in Medicine & Biology 62.17 (2017): 6993.

epidermis	subcutaneous tissue
dermi	s muscle

	Thermal Properties						
	Thermal	Heat		Meta.			
Thickn.	cond.	cap.	perf.	rate			
mm	W/K/m	kJ/K/kg	W/K/m ³	W/m ³			

Additional results and future work

- IR measurements of a mockup device (characterized by a notch array at 28 GHz, see IEC TR 63170) were also conducted; the measured peak skin temperature increase at touch position with the forearm was less than 1°C for a forward power of 75 mW ullet
- Thermographic measurement samples with clothing (wool jumper) showed similar or lower skin temperature increase compared with bare skin ullet
- The skin temperature increase due to a lightbulb (20 W, halogen) placed at 20 cm from the forearm was 4.5° C after 7 minutes lacksquare
- The surface skin temperature variation for the forearm when not exposed to any RF source, was found to be within 4 °C to 5 °C \bullet
- Additional numerical evaluations are needed in order to quantify the impact of the layering structure of skin tissue and the uncertainty of the ulletthermal tissue parameters